Connected edge Detour global domination number of a graph
نویسندگان
چکیده
منابع مشابه
connected cototal domination number of a graph
a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the min...
متن کاملThe connected forcing connected vertex detour number of a graph
For any vertex x in a connected graph G of order p ≥ 2, a set S of vertices of V is an x-detour set of G if each vertex v in G lies on an x-y detour for some element y in S. A connected x-detour set of G is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected x-detour set of G is the connected x-detour number of G and is denoted by cdx(...
متن کاملConnected Cototal Domination Number of a Graph
A dominating setD ⊆ V of a graphG = (V,E) is said to be a connected cototal dominating set if 〈D〉 is connected and 〈V −D〉 6= ∅, contains no isolated vertices. A connected cototal dominating set is said to be minimal if no proper subset of D is connected cototal dominating set. The connected cototal domination number γccl(G) of G is the minimum cardinality of a minimal connected cototal dominati...
متن کاملTriple Connected Domination Number of a Graph
The concept of triple connected graphs with real life application was introduced in [7] by considering the existence of a path containing any three vertices of a graph G. In this paper, we introduce a new domination parameter, called Smarandachely triple connected domination number of a graph. A subset S of V of a nontrivial graph G is said to be Smarandachely triple connected dominating set, i...
متن کاملThe Connected Detour Monophonic Number of a Graph
For a connected graph G = (V,E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P . A path P is called a monophonic path if it is a chordless path. A longest x− y monophonic path is called an x− y detour monophonic path. A set S of vertices of G is a detour monophonic set of G if each vertex v of G lies on an x − y detour monophonic path, for some x an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaya Journal of Matematik
سال: 2020
ISSN: 2319-3786,2321-5666
DOI: 10.26637/mjm0804/0042